
Computer Architecture
CS-213

Outline

Program Control Instructions
• Branch Instructions
• Procedure Call and Return Instructions

Program Interrupts
• Difference between Procedure call and Interrupt
• Types of Interrupts
• Interrupt Servicing Mechanism

Program Control Instructions
• A program control instruction changes address value in the PC

and hence the normal flow of execution.
• Change in PC causes a break in the execution of instructions.
• It is an important feature of the computers since it provides

the control over the flow of the program and provides the
capability to branch to different program segments.

Typical Program Control Instructions

• Branch (BR) and Jump (JMP) instructions are used sometimes
interchangeably but, they are different.

• Branch and Jump instructions usually differ in addressing modes.
• Usually Jump is used to refer to unconditional version of branch.
• Skip (SKP) instructions is used to skip one(next) instruction. It can be

conditional or unconditional. It does not need an address field.
• In case of conditional skip instruction, the combination of conditional skip

and a unconditional branch can be used an alternative of conditional
branch. But, storing two instructions will take extra space.

• In skip instruction we increment the PC in execution stage, effectively
incrementing it by 2.

SKP (skip if z=0)

JMP $100

ADD R2,R1,R3

BRNZ $100

Typical Program Control Instructions

• Compare (CMP) instruction performs a comparison via a subtraction, with
difference not retained.

• The comparison causes one of the three following operations
a. A conditional Branch (3ree addresses [2 registers and 1 memory])
b. Change in the contents of a register (3ree addresses)
c. Sets or resets stored status bits (2 addresses), this type of instruction is

usually followed by a branch instruction to conditionally check the status
bit and perform a branch.

• Similarly test (TEST) instructions performs the AND of two operands
without retaining the result.

• It also causes one the above three functions.

Conditional Branch Instructions
• A conditional branch instruction is a branch instruction that may or may

not cause a transfer of control depending on the value of stored bits in the
PSR (processor status register).

• Each conditional branch instruction tests a different combination of Status
bits for a condition.

• If the condition is true, control is transferred to the effective address
(PC←Add). If the condition is false, the program continues with the next
instruction (PC←PC+1).

• Below is a list of Conditional Branch instructions, letter ‘N’ stands for NOT.

Conditional Branch Instructions
• ‘C’ represents the carry, or borrow after arithmetic addition or

subtraction.
• ‘N’ represents the leftmost bit of the result of the operation i.e. sign bit.
• ‘V’ is for overflow i.e. if the sign of the result is changed (inverted).
• ‘Z’ is for zero i.e., to check whether the result of an operation is zero (Z=1)

or not zero (Z=0).

Comparison Branch Instructions
• Some branch instructions are a combination of compare and conditional

branch instructions. They are run after the compare instruction has
performed the comparison and status bits are updated.

• Different status bits are checked for signed and unsigned numbers.
• Keep in mind that
• A≥B is complement of A<B and
 A≤B is complement of A>B. That means if we know the condition of status
bits for one, the condition for the other complementary relation is obtained
by complement.

Comparison Branch Instructions
• For unsigned numbers.

• For signed numbers.

Procedure Call and Return Instructions
• A procedure is a self contained sequence of instructions that performs a

given task.
• It is also called a subroutine.
• When a procedure is called, the starting address of the procedure is stored

in the PC and the instruction following the current instruction is
temporarily stored elsewhere. When the procedure (block of code) is
executed, the return is made to the main program by loading the PC with
its old value.

• Instruction following the procedure call is called continuation point and
the corresponding address is called the return address.

• It is actually a low level form of functions in C++. (e.g., square(22);)
• Procedure can also be called within another procedure.
• The final instruction of every procedure must be return to the calling

program.

Procedure Call and Return Instructions

• The return address can be stored in memory, register or stack.
• Stack is preferred because of its ease of access when we need to call a

procedure inside another procedure. In that case that the return address
at the TOS (top of stack) is always to the program which called the current
procedure.

Main

Program

P1

P2

P3 P3

Stack

Return Main

Return P1

Return P2

Procedure Call and Return Instructions

• For calling Procedure

• For Return

Program Interrupts
• An interrupt transfers control from a program that is currently running to

another program as a result of externally or internally generated request.
• The procedure for servicing the interrupt in this case is called the interrupt

service routine (ISR).

Program Interrupts

Program Interrupts
• Usually a computer runs in two modes i.e. system mode and user mode.
• They differ in the privilege level i.e., whether they are allowed to execute

certain instructions or not.
• System mode is basically operating system, it has more privilege than the

user mode as it is allowed to perform certain tasks which cannot be
performed by operating in the user mode.

• Application softwares are run in user mode.
• Usually mode of the processor is indicated by PSR.

Types of Interrupts
• An interrupt has three types
1. External Interrupts
2. Internal Interrupts
3. Software Interrupts
• External and Internal interrupts are both called hardware interrupts.
• External interrupts come from input or output devices, from timing

devices, from a circuit monitoring the power supply. Or from any other
external source.

• Conditions that cause external interrupts are an input or output device
requesting a transfer of data, the external device completing a transfer of
data, the time-out of an event, or an impending power failure.

Types of Interrupts
• Internal interrupts arise from the invalid or erroneous use of an

instruction or data. Internal interrupts are also called traps.
• Examples of interrupts caused by internal conditions are an arithmetic

overflow, an attempt to divide by zero, an invalid opcode, a memory stack
overflow and a protection violation.

• A protection violation is an attempt to address an area of memory that is
not supposed to be accessed by the currently executing program.

• The service programs that process internal interrupts, determine the
corrective measure to be taken in each case.

Types of Interrupts
• Interrupt generated by executing an instruction is called software

interrupt. Software interrupts are generally used to make system calls i.e.
to request operating system to perform an I/O operation or to run a new
program. Therefore these type of interrupts request the transfer of mode
from user to system.

• In C++, A cout or cin statement would generate a software interrupt
because it would make a system call to print something.

Processing External Interrupts
• IVAD is interrupt vector address.
• ENI stands for enable interrupt
• DSI stands for disable interrupt. These instructions are used to enable or

disable a set of interrupts.
• INTACK is signal that is used by the processor to tell the device that

interrupt is now being processed and send IVAD.
• Following is a sequence of instructions that is executed while servicing an

interrupt request.

Processing External Interrupts

Polling Vs Interrupt
• In polling, the processor waits for the request to come and sits idly until a

request arrives, while in interrupt, when there is no interrupt being
processed, the processor is busy in doing other tasks.

• Polling is like picking up your phone every few seconds to see if you have a
call. Interrupts are like waiting for the phone to ring.

Lecture-8

Part-2

Outline

• Performance
• Defining Performance
• Measuring Performance
• CPU Performance and Its factors
• Instruction Performance
• The classic CPU Performance Equation

Defining Performance
 For some program running on machine X,

 "X is n times faster than Y“

 PerformanceX
PerformanceY

 = Execution TimeY
Execution TimeX

 = n
Example:
– Computer A runs a program in 10 seconds while
– Computer B runs the same program in 15 seconds
– How much faster is A compared to B
Using above equation We have

PerformanceX
PerformanceY

 =
ଵହ
ଵ଴	

 = 1.5

A is 1.5 times faster than B.

PerformanceX = 1 / Execution timeX

Measuring Performance
• Time is a measure of performance
• Program execution time is measured in seconds per program
• Elapsed Time/Response Time: It is the total time to complete a task

including
• disk accesses
• memory accesses
• input/output activity
• operating system overhead

• A throughput measure is an amount of something per unit time. For

processors, the number of instructions executed per unit time is an
important component of performance.

 Embedded and desktop computers are more focused on response time.
 While Servers are more focused on throughput.
• Replacing a microprocessor with a faster one would increase both.
• Adding another processor to a multiprocessor system only increases

throughput.

Measuring Performance
 A processor may work on several programs simultaneously in order to

increase throughput there we want to know the time it spends on our
program.

 CPU time:
o CPU time is the amount of time for which a central processing unit (CPU)

was used for processing instructions of a computer program, as opposed to,
for example, waiting for input/output (I/O) operations.
It can be further divided into two categories
– System CPU Time; time spent in OS performing tasks on behalf of the

program
– User CPU Time; time spent in the program

Measuring Performance

Measuring Performance
• Clock
• Instead of using seconds to measure execution time, often we use clock

cycles, clock ticks, clock periods, clocks, or cycles.
• Clock rate (frequency) = cycles per second.
• Measured in Hertz (1 Hz = 1 cycle/s).
• Clock period is the time between ticks of the clock and is measured in

seconds per cycle.
• Period = 1/frequency
• Example: A 200 MHz (MegaHertz) clock has a clock period of 5

nanoseconds

CPU Performance and Its factors
• CPU time can be represented by this simple Equation

• If we are using clock rate then

• So, the goal of the designer is to minimize the number of clock cycles or
the length of the clock cycle.

• There is a trade-off between the two. (Remember single cycle processor?)

CPU Performance and Its factors

Example

CPU Performance and Its factors

Example

Instruction Performance
• Execution time and CPU time must depend on the number of instructions

as well.

• Clock Cycles per instruction CPI, represents the average number of clock

cycles per instruction for a program or program fragment.

Instruction Performance

Example

Instruction Performance
Example

The classic CPU Performance Equation

• The basic CPU equation can now be represented in terms of instruction
count.

• In terms of Clock rate

Comparing Code Segments
Example

Comparing Code Segments
Example

How to Determine these Values
• We can determine CPU execution time by running the program.
• Clock Cycle time is published as a part of the documentation of the

microprocessor.
• We can find instruction count by using the software tools or by the

simulator of the architectures.
• We can also use hardware counters which are found in microprocessors to

conduct measurements.
• CPI varies even within the same architectures and same clock rates.

